
Chapter 1Deterministic Parallel Fortran�K. Mani Chandyy Ian FosterzPreprint MCS-P350-0193, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1993
AbstractWe describe Fortran M, message-passing extensions to Fortran 77 that providedeterministic execution and information hiding while preserving desirable properties ofmessage passing.1 IntroductionFortran M is a small set of extensions to Fortran 77 with the following features:1. Modularity. Programs are constructed by using explicitly declared communicationchannels to plug together program modules called processes. A process canencapsulate common data, subprocesses, and internal communication.2. Safety. Operations on channels are restricted so as to guarantee deterministicexecution, even in dynamic computations that create and delete processes andchannels. Channels are typed, so a compiler can check for correct usage.3. Architecture Independence. The mapping of processes to processors can be speci�edwith respect to a virtual computer with size and shape di�erent from that of thetarget computer. Mapping is speci�ed by annotations that in
uence performance butnot correctness.4. E�ciency. Programs can be compiled e�ciently for vector machines, shared-memory computers, distributed-memory computers, and networks of workstations.Because message passing is incorporated into the language, a compiler can optimizecommunication as well as computation.5. Flexibility. Programs can integrate data-parallel and control-parallel computations.Fortran M is a general-purpose parallel programming language that complementsdata-parallel approaches such as High Performance Fortran. It appears particularly usefulfor irregular and dynamic problems, and for multidisciplinary applications that may requirecoordination of multiple data-parallel computations.This paper provides an introduction to Fortran M. The reader is referred to [3] for adetailed language description, a discussion of compiler techniques, and a survey of related�This work was supported by the National Science Foundation under Contract NSF CCR-8809615 andby the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.yDepartment of Computer Science, California Institute of Technology, Pasadena, CA 91125.zMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.1

2 Chandy and FosterProcess: PROCESSPROCESS COMMONINPORTOUTPORTINTENTConcurrency: PROCESSES/ENDPROCESSESPROCESSDOCommunication: CHANNELMERGERSENDRECEIVEENDCHANNELMOVEPORTPROBEMapping: PROCESSORSLOCATIONSUBMACHINEFig. 1. Fortran M's Extensions to Fortran 77work. A prototype Fortran M compiler for sequential and parallel computers is availablefrom Argonne National Laboratory. Send electronic mail to fortran-m@mcs.anl.gov fordetails.2 Language OverviewFortran M's extensions to Fortran 77 are listed in Figure 1. They consist ofstatements for de�ning processes and for specifying communication, concurrent execution,nondeterministic execution, and process placement. The extensions have a Fortran 77\look and feel." For instance, the communication statements are modeled on Fortran�le I/O statements and the process placement statements on Fortran array manipulationstatements.2.1 ProcessesFortranM programs are constructed from building blocks called processes. A process, likea Fortran program, de�nes common data (labeled PROCESS COMMON to emphasize that itis local to the process) and the subroutines that operate on that data. It also de�nes theinterface by which it communicates with its environment. A process has the same syntaxas a subroutine, except that the keyword PROCESS is used in place of SUBROUTINE.A process's dummy arguments (formal parameters) are a set of port variables. Thesede�ne the process's interface to its environment. (For convenience, conventional argumentpassing is also permitted between a process and its parent, with INTENT declarationsindicating whether argument values are to be copied on call and/or return. Thisnonessential feature is not described here.) A port variable declaration has the generalform

Deterministic Parallel Fortran 3port type (data type list) name listThe port type is either OUTPORT or INPORT and speci�es whether the port is to be usedto send or receive data, respectively. The data type list is a comma-separated list of typedeclarations. It speci�es the format of the messages that will be sent on the port, much asa subroutine's dummy argument declarations de�ne the arguments that will be passed tothe subroutine.2.2 CommunicationAs each process has its own address space, the only mechanism by which a process caninteract with its environment is via the ports passed to it as arguments. A process uses theSEND, ENDCHANNEL, and RECEIVE statements to send and receive messages on these ports.These statements are similar in syntax and semantics to Fortran's WRITE, ENDFILE, andREAD statements and can include optional END=, ERR=, and IOSTAT= speci�ers to indicatehow to recover from various exceptional conditions.A process sends a value by applying the SEND statement to an out-port. It sends asequence of values by repeated calls to SEND; it can also call ENDCHANNEL to send an end-of-channel (EOC) message. The OUTPORT declaration speci�es the types of values thatcan be communicated on the port. The SEND and ENDCHANNEL statements are nonblocking(asynchronous): they complete immediately. A process receives a value by applying theRECEIVE statement to an in-port. A RECEIVE statement is blocking (synchronous): it doesnot complete until data is available.2.3 Concurrent ExecutionA Fortran M program is constructed by using process blocks and process do-loops tocompose processes. A program creates channels to establish single-producer, single-consumer communication streams between processes. In this way, processes with morecomplex behaviors are de�ned. These can themselves be composed with other processes,in a hierarchical fashion. A process block has the general formprocessesstatement 1. . .statement nendprocesseswhere n � 0 and the statements are process calls, process do-loops (de�ned below), and/orat most one subroutine call. Statements in a process block execute concurrently. A processblock terminates, allowing execution to proceed to the next executable statement, when allits constituent statements terminate.Recall that a process communicates with its environment by sending and receivingmessages on ports. When composing processes, we use the channel statement to de�nethese ports to be references to �rst-in, �rst-out message queues called channels. Thisstatement has the general formchannel(out=out-port, in=in-port)and both creates a channel and de�nes out-port and in-port to be references to this channel.These ports are to be used for sending and receiving messages, respectively, and can be

4 Chandy and Fosterpassed as arguments to the composed processes.A process do-loop creates multiple instances of the same process. It is frequently usedto de�ne single program, multiple data (SPMD) computation structures, in which multiplecopies of a process are connected in a regular communication structure. The process do-loop is identical in form to the do-loop, except that the keyword processdo is used in placeof DO and the body can include only a process do-loop or a process call. It can be nestedinside both process do-loops and process blocks, for example:processdo 10 i = 1,ncall myprocess10 continue2.4 NondeterminismThe determinism enforced by the use of channels removes a major source of complexityin concurrent programming. However, nondeterminism can be useful in nondeterministicenvironments. For example, a load-balancing algorithm may need to execute either a localor remote task, depending on which is the �rst to become available. Similarly, we maywish to process requests to access a shared data structure, or input from several externaldevices, in the order in which they become available. These behaviors can be speci�ed byusing the merge and probe statements.A merge statement connects multiple out-ports with a single in-port, to form a many-to-one communication structure. Values arriving on any out-port are copied to the in-port,with the order of messages on each out-port being preserved in the in-port and any messageplaced on an out-port eventually appearing on the in-port. The probe statement allows aprocess to determine whether data is pending on an in-port.2.5 Process PlacementFortran M incorporates constructs that allow the programmer to specify how processesare to be mapped to processors. These constructs in
uence performance but not correctness.Hence, we can develop a program on a uniprocessor and then tune performance on a parallelcomputer by changing mapping constructs.Fortran M mapping constructs are based on the concept of a virtual computer: acollection of virtual processors, which may or may not have the same topology as thephysical computer on which a program executes. For consistency with Fortran concepts,a Fortran M virtual computer is an N -dimensional array, and the mapping constructsare modeled on Fortran 77's array manipulation constructs. The processors declarationspeci�es the shape and dimension of a processor array, the location annotation mapsprocesses to speci�ed elements of this array, and the submachine annotation speci�es thata process should execute in a subset of the array.3 Programming ExampleWe illustrate the use of Fortran M by showing how the language is used to implement acoupled ocean/atmosphere climate model. An atmosphere circulation model and an oceancirculation model are to execute concurrently and must exchange information periodically:The ocean model provides the atmosphere model with an array of sea surface temperatures(SST), and the atmosphere model provides the ocean model with two arrays containing

Deterministic Parallel Fortran 5components of horizontal momentum, U and V. We implement both models as processes,and de�ne an interface that allows for the exchange of SST, U, and V values.We assume for simplicity that the atmosphere model is a sequential program. Hence, wede�ne an interface consisting of two ports, sst i and uv o. The in-port sst i can be usedto receive arrays of real values representing sea surface temperatures, while the out-portuv o can be used to send two such arrays representing U and V values. The following codeimplements a model with this interface that repeatedly sends U and V data on the portuv o and receives SST data from the port sst i. After doing this TMAX times, it signalsthe end of the communication by sending an end-of-channel (EOC) message on uv o. Notethe use of process common to hold the sst, u, and v arrays. These arrays are local to theatmosphere process.process atmosphere(sst i,uv o)parameter(NLAT=128, NLON=256, TMAX=100)C The ports sst i and uv o are the external interface.inport (real x(NLAT,NLON)) sst ioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uv oC Process common variables.process common /atmo/ sst, u, vreal sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)C Repeat TMAX times: recv SST, update U & V, send U & V.do 10 i=1,TMAXsend(uv o) u,vreceive(sst i) sstcall atm compute10 continueC Signal end of communication.endchannel(uv o)endThe ocean model might be as follows. Its interface is complementary to that of theatmosphere model: the in-port uv i can be used to receive U and V data and the out-portuv o can be used to send SST data. The body of the program repeatedly sends SST dataon the out-port and receives U and V data on the in-port, until EOC is detected on sst i.Note the use of the END= speci�er in the RECEIVE statement to indicate where executionshould continue if EOC is detected. Again, process common is used to maintain local data.

6 Chandy and Fosterprocess ocean(uv i,sst o)parameter(NLAT=128, NLON=256)C The ports uv i and sst o are the external interface.inport (real x(NLAT,NLON), real y(NLAT,NLON)) uv ioutport (real x(NLAT,NLON)) sst oC Process common variables.process common /ocean/ sst, u, vreal sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)C Repeat until EOC: recv U & V, compute SST, send SST.do while(.true.)send(sst o) sstreceive(uv i,end=10) u,vcall ocn computeenddo10 endThe two processes are plugged together by means of two channels, one for commu-nicating SST values and the other for communicating U and V values. This structureis illustrated in Figure 2 and is created by the following program. The program createstwo channels, spawns the atmosphere and ocean processes, blocks until the process blockterminates, and then terminates itself.program coupled modelparameter(NLAT=128, NLON=256)C Local port variables.inport (real x(NLAT,NLON)) sstioutport (real x(NLAT,NLON)) sstoinport (real x(NLAT,NLON), real y(NLAT,NLON)) uvioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uvoC Create channels and de�ne ports.channel(out=ssto,in=ssti)channel(out=uvo,in=uvo)C Call two models with ports as arguments.processescall atmosphere(ssti,uvo)call ocean(uvi,ssto)endprocessesendWe now have a complete parallel program that can be executed on a sequential orparallel computer. This program can be executed on one processor or two, or on twodi�erent computers, simply by changing mapping statements; no changes to the componentmodules are required. Similarly, di�erent implementations of the ocean or atmospheremodule can be substituted, as long as they use the same interface. Notice that althoughthe execution order of the concurrently executing atmosphere and ocean processes isdetermined only by availability of messages on channels, the computed result does notdepend on the order in which the processes execute. That is, the program is deterministic.This example is easily extended to incorporate parallel ocean and atmosphere models [3].The atmosphere and ocean processes use process do-loops to create multiple subprocesses

Deterministic Parallel Fortran 7
A T M O C N

channel(ssti, ssto)

channel(uvi, uvo)
uviuvo

ssti ssto
Fig. 2. Coupled Ocean/Atmosphere Modeland the interface between the two components is de�ned in terms of arrays of channels.Similarly, the example can be extended to incorporate a separate interpolator processthat handles conversion of data between the di�erent grid systems commonly used in oceanand atmosphere models, an I/O process that handles data reduction and �le I/O, and soon. Hence, Fortran M can be used as a general-purpose modular framework for buildingearth system models on parallel computers [2].

4 Data ParallelismThe basic paradigm underlying Fortran M is task parallelism: the parallel execution of(possibly dissimilar) tasks. However, Fortran M also provides some support for data-parallel computation. Programs can use data distribution statements to create distributedarrays. Semantically, distributed arrays are indistinguishable from nondistributed arrays.That is, they are accessible only to the process in which they are declared and are copiedwhen passed as arguments to subprocesses. Operationally, elements of a distributed arrayare distributed over the nodes of the virtual computer in which the process is executing.Hence, operations on a distributed array may cause communication.We utilize Fortran D-style data distribution statements to create distributed arraysin Fortran M. (High Performance Fortran statements could also be used.) Thesestatements allow Fortran M to specify certain classes of data-parallel computations. Forexample, in the following code fragment, the same computation is performed on each rowof a distributed array. The processors statement indicates that the program is to becompiled for an array of N (virtual) processors; the location annotation on the call tocomputesum speci�es that the process is to execute on the ith processor.

8 Chandy and Fosterprocessors(N)real A(N,N), sum(N)decomposition B(N)align A(i,j) with B(i)processdo i=1,Ncomputesum(N, A(i,1), sum(i)) location(i)enddoendprocess computesum(N, B, sum)real B(N), sumintent(in) N,Bintent(out) sumsum = 0.0do i = 1,Nsum = sum + B(i)enddoend5 Theoretical FoundationsFortran M is supported by a theory of parallel and sequential composition of communi-cating processes [1]. Key characteristics of this theory include (1) proofs that a FortranMprogram is deterministic even though processes and channels are created and deleted andchannels are reconnected; (2) extension of sequential programming proof techniques to par-allel programs; and (3) a compositional proof theory in which the speci�cation of the wholeis derived from the speci�cations (and not the texts) of the part.6 ConclusionsOur goal in de�ning FortranM is to make the advantages of high-level languages availableto programmers developing programs for parallel machines. In particular, we are concernedwith ensuring safety. This is achieved in two ways. First, programs that do not use twonondeterministic constructs are guaranteed to be deterministic, meaning that they producethe same output for all executions with a given input. Second, the type information requiredby Fortran M allows a compiler to detect many erroneous programs at compile time.Fortran M's extensions to Fortran 77 can be described in a few minutes andmastered in a few hours. The extensions allow programmers to develop parallel programsby plugging together modules that encapsulate both code and data. This object-orientedapproach to program design supports the implementation of reusable parallel libraries andmultidisciplinary applications. Furthermore, because the extensions can be implementede�ciently on a wide variety of parallel computers, application portability is achieved withlittle or no performance penalty. Indeed, as communication forms an integral part of thelanguage, it should be possible to realize substantial performance improvements throughcompiler optimizations.The de�nition of FortranM opens several avenues for future research. The integrationof data-parallel notations such as High Performance Fortran with Fortran M willallow the implementation of heterogeneous applications, in which a Fortran M program

Deterministic Parallel Fortran 9coordinates multiple data-parallel computations. Data-parallel subroutines can be invokedin a speci�ed processor array, with ports used for communication with Fortran Mcomputations. The integration of Fortran 90 constructs is also of interest. For example,array sections can be used to specify both mapping to a column of a processor array andcommunication of a column of a data array.AcknowledgmentsWe are grateful to Bob Olson for his splendid e�orts developing the prototype Fortran Mcompiler and to members of the Rice University Fortran compiler group for their valuablecomments on the Fortran M language design.References[1] K. M. Chandy and I. Foster, On communicating processes, Preprint MCS-P346-0193, Mathe-matics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1993.[2] I. Foster, Fortran M as a language for building earth system models, Preprint MCS-P345-0193, Argonne National Laboratory, and Proc. 5th ECMWF Workshop on Parallel Processingin Meteorology, ECMWF, Reading, U.K., 1992.[3] I. Foster and K. M. Chandy, Fortran M: A language for modular parallel programming,Preprint MCS-P237-0992, Mathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, Ill., 1992.[4] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu,Fortran D language speci�cation, Technical Report TR90-141, Department of ComputerScience, Rice University, Houston, Texas, 1990.

